Gleitende durchschnittliche Vorhersage Einführung. Wie Sie vielleicht vermuten, sehen wir uns einige der primitivsten Ansätze zur Prognose an. Aber hoffentlich sind dies zumindest eine lohnende Einführung in einige der Computing-Fragen im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir fortfahren, indem wir am Anfang beginnen und mit Moving Average Prognosen arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist mit gleitenden durchschnittlichen Prognosen vertraut, unabhängig davon, ob sie glauben, dass sie sind. Alle College-Studenten machen sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, wo Sie vier Tests während des Semesters haben werden. Nehmen wir an, Sie haben eine 85 bei Ihrem ersten Test. Was würdest du für deinen zweiten Test-Score vorhersagen Was denkst du, dein Lehrer würde für deinen nächsten Test-Score voraussagen Was denkst du, deine Freunde können für deinen nächsten Test-Score voraussagen Was denkst du, deine Eltern können für deinen nächsten Test-Score voraussagen All das Blabbing, das du mit deinen Freunden und Eltern machen kannst, sie und deinem Lehrer sind sehr wahrscheinlich zu erwarten, dass du etwas im Bereich der 85 bekommst, die du gerade bekommen hast. Nun, jetzt können wir davon ausgehen, dass trotz Ihrer Selbst-Förderung zu Ihren Freunden, Sie über-schätzen Sie sich selbst und Figur können Sie weniger für den zweiten Test zu studieren und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmert zu gehen Erwarten Sie auf Ihrem dritten Test zu bekommen Es gibt zwei sehr wahrscheinlich Ansätze für sie eine Schätzung zu entwickeln, unabhängig davon, ob sie es mit Ihnen teilen wird. Sie können sich selbst sagen, "dieser Kerl ist immer bläst Rauch über seine smarts. Er wird noch 73, wenn er glücklich ist. Vielleicht werden die Eltern versuchen, mehr unterstützend zu sein und zu sagen, quotWell, so weit hast du eine 85 und eine 73 bekommen, also vielleicht solltest du auf eine (85 73) 2 79 kommen. Ich weiß nicht, vielleicht, wenn du weniger feiern musst Und werent wedelte den Wiesel überall auf den Platz und wenn du anfing, viel mehr zu studieren, könntest du eine höhere Punktzahl bekommen. Diese beiden Schätzungen belegen tatsächlich durchschnittliche Prognosen. Die erste nutzt nur Ihre aktuellste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als eine gleitende durchschnittliche Prognose mit einer Periode von Daten bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass all diese Leute, die auf deinem großen Verstand zerschlagen sind, dich irgendwie verärgert haben und du entscheidest, den dritten Test aus deinen eigenen Gründen gut zu machen und eine höhere Punktzahl vor deinem Quoten zu setzen. Sie nehmen den Test und Ihre Partitur ist eigentlich ein 89 Jeder, auch Sie selbst, ist beeindruckt. So, jetzt haben Sie die endgültige Prüfung des Semesters kommen und wie üblich fühlen Sie sich die Notwendigkeit, goad jeder in die Herstellung ihrer Vorhersagen darüber, wie youll auf den letzten Test zu tun. Nun, hoffentlich seht ihr das Muster. Nun, hoffentlich kannst du das Muster sehen. Was glaubst du, ist die genaueste Pfeife während wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zurück, die von deiner entfremdeten Halbschwester namens Whistle während wir arbeiten. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst stellen wir die Daten für eine dreistellige gleitende durchschnittliche Prognose vor. Der Eintrag für Zelle C6 sollte jetzt sein. Du kannst diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie sich der Durchschnitt über die aktuellsten historischen Daten bewegt, aber genau die drei letzten Perioden verwendet, die für jede Vorhersage verfügbar sind. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngsten Vorhersage zu entwickeln. Dies unterscheidet sich definitiv von dem exponentiellen Glättungsmodell. Ive enthalten die quotpast Vorhersagen, weil wir sie in der nächsten Webseite verwenden, um die Vorhersagegültigkeit zu messen. Jetzt möchte ich die analogen Ergebnisse für eine zweistufige gleitende durchschnittliche Prognose vorstellen. Der Eintrag für Zelle C5 sollte jetzt sein. Du kannst diese Zellformel in die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast-Vorhersagen für illustrative Zwecke und für die spätere Verwendung in der Prognose-Validierung enthalten. Einige andere Dinge, die wichtig sind, um zu bemerken. Für eine m-Periode gleitende durchschnittliche Prognose werden nur die m aktuellsten Datenwerte verwendet, um die Vorhersage zu machen. Nichts anderes ist nötig Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie quotpast Vorhersagen quot, bemerken, dass die erste Vorhersage in Periode m 1 auftritt. Beide Themen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der beweglichen Mittelfunktion. Jetzt müssen wir den Code für die gleitende Mittelprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden gelten, die Sie in der Prognose und dem Array von historischen Werten verwenden möchten. Sie können es in der beliebigen Arbeitsmappe speichern. Funktion MovingAverage (Historical, NumberOfPeriods) Als Single Declaring und Initialisierung von Variablen Dim Item als Variant Dim Zähler als Integer Dim Akkumulation als Single Dim HistoricalSize als Integer Initialisierung von Variablen Counter 1 Akkumulation 0 Bestimmen der Größe von Historical Array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulation der entsprechenden Anzahl der aktuellsten bisher beobachteten Werte Akkumulation Akkumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie möchten die Funktion auf der Kalkulationstabelle positionieren, damit das Ergebnis der Berechnungen angezeigt wird, wo es wie folgt liegen soll. Erstellen Sie einen Trend oder eine gleitende durchschnittliche Zeile zu einem Diagramm Gilt für: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mehr. Weniger Um Datentrends oder gleitende Durchschnitte in einem von Ihnen erstellten Diagramm anzuzeigen. Du kannst eine Trendlinie hinzufügen. Sie können auch eine Trendlinie über Ihre tatsächlichen Daten hinaus erweitern, um zukünftige Werte vorhersagen zu können. Zum Beispiel prognostiziert die folgende lineare Trendlinie zwei Quartale voraus und zeigt deutlich einen Aufwärtstrend, der für zukünftige Verkäufe vielversprechend aussieht. Sie können eine Trendlinie zu einem 2-D-Diagramm hinzufügen, das nicht gestapelt ist, einschließlich Bereich, Balken, Spalte, Zeile, Lager, Streuung und Blase. Sie können keine Trendlinie zu einem gestapelten, 3-D, Radar, Kuchen, Oberfläche oder Donut-Diagramm hinzufügen. Hinzufügen einer Trendlinie Auf Ihrem Diagramm klicken Sie auf die Datenreihe, zu der Sie eine Trendlinie hinzufügen möchten. Die Trendlinie startet am ersten Datenpunkt der gewünschten Datenreihe. Überprüfe die Trendline-Box. Um eine andere Art von Trendlinie zu wählen, klicken Sie auf den Pfeil neben Trendline. Und klicken Sie dann auf Exponential. Lineare Prognose Oder zwei Period Moving Average. Für weitere Trendlinien klicken Sie auf Weitere Optionen. Wenn Sie weitere Optionen wählen. Klicken Sie unter Trendline-Optionen auf die gewünschte Option im Format Trendline-Bereich. Wenn Sie Polynom wählen. Geben Sie im Feld Auftrag die höchste Leistung für die unabhängige Variable ein. Wenn Sie Moving Average auswählen. Geben Sie die Anzahl der Perioden ein, die verwendet werden sollen, um den gleitenden Durchschnitt im Feld Periode zu berechnen. Tipp: Eine Trendlinie ist am genauesten, wenn ihr R-Quadrat-Wert (eine Zahl von 0 bis 1, die zeigt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) bei oder nahe 1. Wenn Sie eine Trendlinie zu Ihren Daten hinzufügen , Berechnet Excel automatisch seinen R-squared-Wert. Sie können diesen Wert auf Ihrem Diagramm anzeigen, indem Sie den R-quadratischen Wert auf dem Diagramm anzeigen (Format Trendline-Bereich, Trendline-Optionen). In den folgenden Abschnitten erfahren Sie mehr über alle Trendlinienoptionen. Lineare Trendlinie Verwenden Sie diese Art von Trendlinie, um eine optimale Gerade für einfache lineare Datensätze zu erstellen. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten wie eine Zeile aussieht. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit einer stetigen Rate zunimmt oder abnimmt. Eine lineare Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate für eine Zeile zu berechnen: wobei m die Steigung ist und b der Zwischenpunkt ist. Die folgende lineare Trendlinie zeigt, dass der Umsatz der Verkäufe über einen Zeitraum von 8 Jahren konstant gestiegen ist. Beachten Sie, dass der R-Quadrat-Wert (eine Zahl von 0 bis 1, die zeigt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) 0,9792 ist, was eine gute Anpassung der Linie an die Daten ist. Zeigt eine best-fit gekrümmte Linie, ist diese Trendlinie nützlich, wenn die Rate der Veränderung in den Daten steigt oder sinkt schnell und dann Ebenen aus. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Eine logarithmische Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und ln die natürliche Logarithmusfunktion ist. Die folgende logarithmische Trendlinie zeigt das vorhergesagte Bevölkerungswachstum von Tieren in einem Festflächengebiet, wo die Population als Raum für die Tiere abnimmt. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Anpassung der Linie an die Daten ist. Diese Trendlinie ist nützlich, wenn Ihre Daten schwanken. Zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Die Reihenfolge des Polynoms kann durch die Anzahl der Schwankungen der Daten bestimmt werden oder wie viele Kurven (Hügel und Täler) in der Kurve erscheinen. Typischerweise hat eine Polynom-Trendlinie des Auftrags 2 nur einen Hügel oder ein Tal, ein Auftrag 3 hat ein oder zwei Hügel oder Täler, und ein Auftrag 4 hat bis zu drei Hügel oder Täler. Eine Polynom - oder Curvilinear-Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wo b und Konstanten sind. Die folgende Reihenfolge 2 Polynom Trendline (ein Hügel) zeigt die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was nahe bei 1 liegt, so dass die Zeilen gut an die Daten angepasst sind. Bei der Darstellung einer gekrümmten Linie ist diese Trendlinie für Datensätze nützlich, die Messungen vergleichen, die mit einer bestimmten Rate zunehmen. Zum Beispiel die Beschleunigung eines Rennwagens in 1-Sekunden-Intervallen. Sie können keine Power Trendline erstellen, wenn Ihre Daten Null oder negative Werte enthalten. Eine Power-Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind. Hinweis: Diese Option ist nicht verfügbar, wenn Ihre Daten negative oder Nullwerte enthalten. Die folgende Abstandsmessung zeigt die Entfernung in Metern nach Sekunden an. Die Power Trendline zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Linie zu den Daten ist. Wenn man eine gekrümmte Linie anzeigt, ist diese Trendlinie sinnvoll, wenn Datenwerte steigen oder sinken. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null oder negative Werte enthalten. Eine exponentielle Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und e die Basis des natürlichen Logarithmus ist. Die folgende exponentielle Trendlinie zeigt die abnehmende Menge an Kohlenstoff 14 in einem Objekt, wie es altert. Beachten Sie, dass der R-Quadrat-Wert 0,990 ist, was bedeutet, dass die Linie die Daten fast perfekt passt. Moving Average Trendline Diese Trendlinie zeigt Datenschwankungen aus, um ein Muster oder einen Trend deutlicher zu zeigen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (gesetzt durch die Periodenoption), mittelt sie und verwendet den Mittelwert als Punkt in der Zeile. Wenn zum Beispiel die Periode auf 2 gesetzt ist, wird der Mittelwert der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Mittelwert des zweiten und dritten Datenpunktes wird als zweiter Punkt in der Trendlinie usw. verwendet. Eine gleitende durchschnittliche Trendlinie nutzt diese Gleichung: Die Anzahl der Punkte in einer gleitenden durchschnittlichen Trendlinie entspricht der Gesamtzahl der Punkte in der Serie, abzüglich der Nummer, die Sie für den Zeitraum angeben. In einem Streudiagramm basiert die Trendlinie auf der Reihenfolge der x-Werte im Diagramm. Für ein besseres Ergebnis, sortiere die x-Werte, bevor du einen gleitenden Durchschnitt hinzufügst. Die folgende gleitende durchschnittliche Trendlinie zeigt ein Muster in der Anzahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft werden. In der Praxis wird der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihen liefern, wenn der Mittelwert konstant ist oder sich langsam ändert. Im Falle eines konstanten Mittels wird der größte Wert von m die besten Schätzungen des zugrunde liegenden Mittels geben. Eine längere Beobachtungsperiode wird die Effekte der Variabilität ausgleichen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung des zugrunde liegenden Prozesses zu reagieren. Zur Veranschaulichung schlagen wir einen Datensatz vor, der Änderungen des zugrunde liegenden Mittels der Zeitreihen beinhaltet. Die Figur zeigt die Zeitreihen, die für die Illustration verwendet wurden, zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als Konstante bei 10. Beginnend um die Zeit 21 erhöht er sich in jeder Periode um eine Einheit, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden durch Addition des Mittelwertes, eines zufälligen Rauschens aus einer Normalverteilung mit Nullmittelwert und Standardabweichung simuliert. 3. Die Ergebnisse der Simulation werden auf die nächste ganze Zahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir den Tisch benutzen, müssen wir uns daran erinnern, dass zu irgendeiner Zeit nur die bisherigen Daten bekannt sind. Die Schätzungen des Modellparameters, für drei verschiedene Werte von m werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung dargestellt. Die Figur zeigt die gleitende durchschnittliche Schätzung des Mittelwertes zu jeder Zeit und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Eine Schlussfolgerung ergibt sich aus der Figur. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend zurück, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, wenn der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und der durch den gleitenden Durchschnitt vorhergesagte Mittelwert. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Für ein abnehmendes Mittel ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Vorspannung, die in der Schätzung eingeführt werden, sind Funktionen von m. Je größer der Wert von m. Je größer die Größe der Verzögerung und der Vorspannung ist. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittels sind in den nachstehenden Gleichungen angegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, weil das Beispielmodell nicht kontinuierlich zunimmt, sondern es beginnt als Konstante, ändert sich zu einem Trend und wird dann wieder konstant. Auch die Beispielkurven sind vom Lärm betroffen. Die gleitende durchschnittliche Prognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Bias steigen proportional an. Die nachfolgenden Gleichungen zeigen die Verzögerung und die Vorspannung einer Prognoseperiode in die Zukunft im Vergleich zu den Modellparametern. Wiederum sind diese Formeln für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten uns über dieses Ergebnis nicht wundern. Der gleitende durchschnittliche Schätzer beruht auf der Annahme eines konstanten Mittels, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Untersuchungszeitraums. Da Echtzeit-Serien den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens die größte Wirkung für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widersprüchlichen Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu reduzieren und m zu reduzieren, um die Prognose besser auf Veränderungen zu reagieren Im gemein Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Ist die Zeitreihe wirklich ein konstanter Wert, so ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Begriff, der eine Funktion und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes, der mit einer Stichprobe von m Beobachtungen geschätzt wird, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Eine große m macht die Prognose nicht mehr auf eine Veränderung der zugrunde liegenden Zeitreihen. Um die Prognose auf Veränderungen zu reagieren, wollen wir m so klein wie möglich (1), aber das erhöht die Fehlerabweichung. Die praktische Vorhersage erfordert einen Zwischenwert. Vorhersage mit Excel Das Prognose-Add-In implementiert die gleitenden durchschnittlichen Formeln. Das folgende Beispiel zeigt die Analyse, die durch das Add-In für die Beispieldaten in Spalte B bereitgestellt wird. Die ersten 10 Beobachtungen sind indiziert -9 bis 0. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die MA (10) - Spalte (C) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall befindet sich in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Fore nach unten verschoben. Die Err (1) Spalte (E) zeigt den Unterschied zwischen Beobachtung und Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 gleich 6. Der prognostizierte Wert aus dem gleitenden Durchschnitt zum Zeitpunkt 0 beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und die mittlere Durchschnittsabweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet. Mit R für die Zeitreihenanalyse Zeitreihenanalyse Diese Broschüre zeigt Ihnen, wie Sie die R-Statistik-Software verwenden, um einige einfache Analysen durchzuführen, die bei der Analyse üblich sind Zeitreihendaten. Diese Broschüre geht davon aus, dass der Leser einige Grundkenntnisse der Zeitreihenanalyse hat und der Schwerpunkt der Broschüre ist nicht, die Zeitreihenanalyse zu erläutern, sondern vielmehr zu erklären, wie diese Analysen mit R durchgeführt werden können. Wenn Sie neu in der Zeitreihe sind Analyse und möchten mehr über irgendwelche der hier vorgestellten Konzepte erfahren, empfehle ich das Open University Buch 8220Time series8221 (Produktcode M24902), erhältlich ab dem Open University Shop. In dieser Broschüre verwende ich Zeitreihen-Datensätze, die von Rob Hyndman in seiner Time Series Data Library bei robjhyndmanTSDL freundlich zur Verfügung gestellt wurden. Wenn Sie diese Broschüre mögen, können Sie auch gern meine Broschüre über die Verwendung von R für biomedizinische Statistiken, a-luch-of-for-biomedical-statistics. readthedocs. org. Und meine Broschüre über die Verwendung von R für multivariate Analysen, kleine-Mon-für-Multivariate-analysis. readthedocs. org. Lesen von Zeitreihen-Daten Das erste, was Sie tun möchten, um Ihre Zeitreihendaten zu analysieren, wird es sein, es in R zu lesen und die Zeitreihen zu zeichnen. Sie können die Daten in R mit der Funktion scan () lesen, die davon ausgeht, dass sich Ihre Daten für aufeinanderfolgende Zeitpunkte in einer einfachen Textdatei mit einer Spalte befinden. Zum Beispiel enthält die Datei robjhyndmantsdldatamisckings. dat Daten über das Alter des Todes der aufeinanderfolgenden Könige von England, beginnend mit William der Eroberer (ursprüngliche Quelle: Hipel und Mcleod, 1994). Der Datensatz sieht so aus: Nur die ersten Zeilen der Datei wurden angezeigt. Die ersten drei Zeilen enthalten einen Kommentar zu den Daten, und wir wollen dies ignorieren, wenn wir die Daten in R lesen. Wir können dies verwenden, indem wir den Parameter 8220skip8221 der scan () - Funktion verwenden, der angibt, wie viele Zeilen an der Oberseite von Die Datei zu ignorieren. Um die Akte in R zu lesen, die ersten drei Zeilen zu ignorieren, geben wir an: In diesem Fall wurde das Todesalter von 42 aufeinanderfolgenden Königen von England in die Variable 8216kings8217 eingelesen. Sobald Sie die Zeitreihendaten in R gelesen haben, ist der nächste Schritt, die Daten in einem Zeitreihenobjekt in R zu speichern, damit Sie R8217s viele Funktionen zur Analyse von Zeitreihendaten verwenden können. Um die Daten in einem Zeitreihenobjekt zu speichern, verwenden wir die Funktion ts () in R. Um beispielsweise die Daten in der Variablen 8216kings8217 als Zeitreihenobjekt in R zu speichern, geben wir Folgendes ein: Manchmal legen die Zeitreihendaten fest Können in regelmäßigen Abständen gesammelt worden sein, die weniger als ein Jahr waren, zum Beispiel monatlich oder vierteljährlich. In diesem Fall können Sie die Anzahl der Daten festlegen, die Daten pro Jahr gesammelt wurden, indem Sie den Parameter 8216frequency8217 in der Funktion ts () verwenden. Für monatliche Zeitreihendaten setzen Sie die Frequenz12, während für vierteljährliche Zeitreihendaten die Frequenz4 eingestellt ist. Sie können auch das erste Jahr angeben, in dem die Daten gesammelt wurden, und das erste Intervall in diesem Jahr, indem Sie den Parameter 8216start8217 in der Funktion ts () verwenden. Zum Beispiel, wenn der erste Datenpunkt dem zweiten Quartal 1986 entspricht, würden Sie startc (1986,2) setzen. Ein Beispiel ist ein Datensatz der Anzahl der Geburten pro Monat in New York City, von Januar 1946 bis Dezember 1959 (ursprünglich von Newton gesammelt). Diese Daten sind in der Datei vorhanden robjhyndmantsdldatadatanybirths. dat Wir können die Daten in R lesen und als Zeitreihenobjekt speichern, indem wir folgendes eingeben: Ähnlich enthält die Datei robjhyndmantsdldatadatafancy. dat monatliche Verkäufe für einen Souvenirshop an einem Badeort in Queensland, Australien, für Januar 1987 - Dezember 1993 (Originaldaten von Wheelwright und Hyndman, 1998). Wir können die Daten in R lesen, indem wir schreiben: Plotten-Zeitreihen Sobald Sie eine Zeitreihe in R gelesen haben, ist der nächste Schritt in der Regel eine Aufstellung der Zeitreihendaten, die Sie mit der Funktion plot. ts () machen können In R. Zum Beispiel, um die Zeitreihen des Todes des Todes von 42 aufeinanderfolgenden Königen von England zu zeichnen, geben wir: Wir können aus der Zeitpläne sehen, dass diese Zeitreihe wahrscheinlich mit einem additiven Modell beschrieben werden könnte, da die zufälligen Schwankungen In den Daten sind etwa konstant in der Größe über die Zeit. Ebenso, um die Zeitreihen der Anzahl der Geburten pro Monat in der New Yorker Stadt zu zeichnen, geben wir: Wir können aus dieser Zeitreihe sehen, dass es saisonale Unterschiede in der Anzahl der Geburten pro Monat gibt: Es gibt einen Höhepunkt jeden Sommer , Und ein Trog jeden Winter. Wieder scheint es, dass diese Zeitreihe wahrscheinlich mit einem additiven Modell beschrieben werden könnte, da die saisonalen Schwankungen im Laufe der Zeit etwa konstant sind und sich nicht auf das Niveau der Zeitreihen verlassen und die zufälligen Schwankungen auch zu sein scheinen Etwa konstant in der Größe über die Zeit. Ähnlich, um die Zeitreihen der monatlichen Verkäufe für den Souvenir-Shop an einem Strand-Ferienort in Queensland, Australien zu zeichnen, geben wir an: In diesem Fall scheint es, dass ein additives Modell nicht geeignet ist, diese Zeitreihe zu beschreiben, da die Größe Der saisonalen Schwankungen und zufälligen Schwankungen scheinen mit dem Niveau der Zeitreihe zu erhöhen. So können wir die Zeitreihen umwandeln, um eine transformierte Zeitreihe zu erhalten, die mit einem additiven Modell beschrieben werden kann. Zum Beispiel können wir die Zeitreihen umwandeln, indem wir das natürliche Protokoll der ursprünglichen Daten berechnen: Hier sehen wir, dass die Größe der saisonalen Schwankungen und zufälligen Schwankungen in den logarithmierten Zeitreihen im Laufe der Zeit etwa konstant zu sein scheinen Nicht vom Niveau der Zeitreihen abhängen Somit kann die log-transformierte Zeitreihe wahrscheinlich mit einem additiven Modell beschrieben werden. Zerlegen der Zeitreihe Die Zerlegung einer Zeitreihe bedeutet, sie in ihre Bestandteile zu zerlegen, die in der Regel eine Trendkomponente und eine unregelmäßige Komponente sind, und wenn es sich um eine saisonale Zeitreihe handelt, eine saisonale Komponente. Zerlegen von nicht saisonalen Daten Eine nicht saisonale Zeitreihe besteht aus einer Trendkomponente und einer unregelmäßigen Komponente. Das Zerlegen der Zeitreihe beinhaltet das Versuchen, die Zeitreihen in diese Komponenten zu trennen, dh die Trendkomponente und die unregelmäßige Komponente zu schätzen. Zur Abschätzung der Trendkomponente einer nicht-saisonalen Zeitreihe, die mit einem additiven Modell beschrieben werden kann, ist es üblich, ein Glättungsverfahren zu verwenden, wie beispielsweise das Berechnen des einfachen gleitenden Durchschnitts der Zeitreihen. Die SMA () - Funktion im Paket 8220TTR8221 R kann verwendet werden, um Zeitreihendaten mit einem einfachen gleitenden Durchschnitt zu glätten. Um diese Funktion nutzen zu können, müssen wir zuerst das Paket 8220TTR8221 R installieren (Anleitungen zur Installation eines R-Pakets finden Sie unter So installieren Sie ein R-Paket). Sobald Sie das Paket 8220TTR8221 R installiert haben, können Sie das Paket 8220TTR8221 R laden, indem Sie Folgendes eingeben: Sie können dann die Funktion 8220SMA () 8221 verwenden, um Zeitreihendaten zu verkleinern. Um die Funktion SMA () zu verwenden, müssen Sie mit dem Parameter 8220n8221 die Reihenfolge (Spanne) des einfachen gleitenden Durchschnitts angeben. Um beispielsweise einen einfachen gleitenden Durchschnitt von Ordnung 5 zu berechnen, setzen wir n5 in die Funktion SMA (). Zum Beispiel, wie oben diskutiert, ist die Zeitreihe des Todesalter von 42 aufeinanderfolgenden Königen von England nicht saisonal und kann vermutlich unter Verwendung eines additiven Modells beschrieben werden, da die zufälligen Schwankungen in den Daten in etwa größer sind Zeit: So können wir versuchen, die Trendkomponente dieser Zeitreihe durch Glättung mit einem einfachen gleitenden Durchschnitt zu schätzen. Um die Zeitreihen mit einem einfachen gleitenden Durchschnitt von Ordnung 3 zu glätten und die geglätteten Zeitreihendaten zu zeichnen, geben wir: Es gibt immer noch ziemlich viele zufällige Schwankungen in der Zeitreihe, die mit einem einfachen gleitenden Durchschnitt der Ordnung 3 geglättet wurde. Um also die Trendkomponente genauer abzuschätzen, möchten wir vielleicht versuchen, die Daten mit einem einfachen gleitenden Durchschnitt höherer Ordnung zu glätten. Das braucht ein bisschen Test-und-Fehler, um die richtige Menge an Glättung zu finden. Zum Beispiel können wir mit einem einfachen gleitenden Durchschnitt von Ordnung 8 versuchen: Die Daten, die mit einem einfachen gleitenden Durchschnitt von Ordnung 8 geglättet wurden, geben ein klareres Bild der Trendkomponente, und wir können sehen, dass das Alter des Todes der englischen Könige zu sein scheint Haben sich von etwa 55 Jahre alt auf etwa 38 Jahre alt während der Herrschaft der ersten 20 Könige, und dann erhöht, um bis etwa 73 Jahre alt am Ende der Herrschaft des 40. Königs in der Zeitreihe. Zerlegen saisonale Daten Eine saisonale Zeitreihe besteht aus einer Trendkomponente, einer saisonalen Komponente und einer unregelmäßigen Komponente. Das Zerlegen der Zeitreihe bedeutet, die Zeitreihe in diese drei Komponenten zu trennen, dh die Schätzung dieser drei Komponenten. Um die Trendkomponente und die saisonale Komponente einer saisonalen Zeitreihe, die mit einem additiven Modell beschrieben werden kann, abzuschätzen, können wir die Funktion 8220decompose () 8221 in R verwenden. Diese Funktion schätzt die Trend-, Saison - und unregelmäßigen Komponenten einer Zeitreihe, die Kann mit einem additiven Modell beschrieben werden. Die Funktion 8220decompose () 8221 gibt ein Listenobjekt als Ergebnis zurück, wobei die Schätzungen der Saisonkomponente, der Trendkomponente und der unregelmäßigen Komponente in benannten Elementen dieser Listenobjekte, z. B. 8220seasonal8221, 8220trend8221 und 8220random8221, gespeichert sind. Zum Beispiel, wie oben diskutiert, ist die Zeitreihe der Anzahl der Geburten pro Monat in New York City saisonal mit einem Höhepunkt jeden Sommer und Trog jeden Winter, und kann wahrscheinlich mit einem additiven Modell beschrieben werden, da die saisonalen und zufälligen Schwankungen zu sein scheinen Im Laufe der Zeit grob konstant sein: Um den Trend, die saisonalen und unregelmäßigen Komponenten dieser Zeitreihe abzuschätzen, geben wir: Die geschätzten Werte der saisonalen, trend - und unregelmäßigen Komponenten werden nun in Variablen gebunden. GeburtsstundenerzeugnisseKomponentenseasonal, Geburtsstadiencomponentstrend und GeburtsstämmeKomponenten. Zum Beispiel können wir die geschätzten Werte der Saisonkomponente ausdrucken, indem wir folgendes eingeben: Die geschätzten saisonalen Faktoren werden für die Monate Januar bis Dezember angegeben und sind für jedes Jahr gleich. Der größte saisonale Faktor ist für Juli (ca. 1,46), und der niedrigste ist für Februar (ca. -2,08), was darauf hindeutet, dass es einen Höhepunkt in den Geburten im Juli und einen Trog in Geburten im Februar jedes Jahr zu sein scheint. Wir können die geschätzten Trend-, Saison - und unregelmäßigen Komponenten der Zeitreihen mit der Funktion 8220plot () 8221 aufführen: Die obige Darstellung zeigt die ursprüngliche Zeitreihe (oben), die geschätzte Trendkomponente (zweites von oben), Die geschätzte saisonale Komponente (dritter von oben) und die geschätzte unregelmäßige Komponente (unten). Wir sehen, dass die geschätzte Trendkomponente einen kleinen Rückgang von etwa 24 im Jahr 1947 auf etwa 22 im Jahr 1948 zeigt, gefolgt von einem stetigen Anstieg von dann auf etwa 27 im Jahr 1959. Saisonale Anpassung Wenn Sie eine saisonale Zeitreihen, die beschrieben werden können Ein additives Modell, können Sie saisonabhängig die Zeitreihen durch Schätzen der saisonalen Komponente und subtrahieren die geschätzte saisonale Komponente aus der ursprünglichen Zeitreihe. Wir können dies mit der Schätzung der saisonalen Komponente berechnen, die durch die Funktion 8220decompose () 8221 berechnet wird. Zum Beispiel, um die Zeitreihen der Anzahl der Geburten pro Monat in New York City saisonal anzupassen, können wir die saisonale Komponente mit 8220decompose () 8221 abschätzen und dann die saisonale Komponente aus der ursprünglichen Zeitreihe subtrahieren: Wir können dann die Saisonbereinigte Zeitreihen mit der Funktion 8220plot () 8221, durch Eingabe: Sie können sehen, dass die saisonale Variation aus der saisonbereinigten Zeitreihe entfernt wurde. Die saisonbereinigte Zeitreihe enthält nun nur die Trendkomponente und eine unregelmäßige Komponente. Prognosen mit exponentieller Glättung Exponentielle Glättung kann verwendet werden, um kurzfristige Prognosen für Zeitreihendaten zu machen. Einfache exponentielle Glättung Wenn Sie eine Zeitreihe haben, die mit einem additiven Modell mit konstantem Niveau und ohne Saisonalität beschrieben werden kann, können Sie einfache, exponentielle Glättung verwenden, um kurzfristige Prognosen zu machen. Das einfache exponentielle Glättungsverfahren bietet eine Möglichkeit, den Pegel zum aktuellen Zeitpunkt zu schätzen. Die Glättung wird durch den Parameter alpha für die Schätzung des Pegels zum aktuellen Zeitpunkt gesteuert. Der Wert von alpha liegt zwischen 0 und 1. Werte von alpha, die nahe bei 0 sind, bedeutet, dass bei der Erstellung von Prognosen zukünftiger Werte wenig Gewicht auf die aktuellsten Beobachtungen gelegt wird. Zum Beispiel enthält die Datei robjhyndmantsdldatahurstprecip1.dat insgesamt jährlichen Niederschlag in Zoll für London, von 1813-1912 (Original-Daten von Hipel und McLeod, 1994). Wir können die Daten in R lesen und sie mit der Eingabe eingeben: Sie können aus der Handlung sehen, dass es annähernd konstant ist (der Mittelwert bleibt bei etwa 25 Zoll konstant). Die zufälligen Schwankungen in den Zeitreihen scheinen im Laufe der Zeit etwa konstant zu sein, so dass es wahrscheinlich angebracht ist, die Daten mit einem additiven Modell zu beschreiben. So können wir Prognosen mit einfacher exponentieller Glättung machen. Um Prognosen mit einfacher, exponentieller Glättung in R vorzunehmen, können wir mit der Funktion 8220HoltWinters () 8221 in R ein einfaches exponentielles Glättungsprädiktionsmodell platzieren. Um eine einfache, exponentielle Glättung von HoltWinters () zu verwenden, müssen wir die Parameter betaFALSE und gammaFALSE in die HoltWinters () - Funktion (die Beta - und Gamma-Parameter werden für Holt8217s exponentielle Glättung oder Holt-Winters exponentielle Glättung verwendet, wie unten beschrieben). Die Funktion HoltWinters () gibt eine Listenvariable zurück, die mehrere benannte Elemente enthält. Zum Beispiel, um eine einfache exponentielle Glättung zu verwenden, um Prognosen für die Zeitreihen des jährlichen Niederschlags in London zu machen, geben wir an: Die Ausgabe von HoltWinters () sagt uns, dass der Schätzwert des Alpha-Parameters etwa 0,024 beträgt. Dies ist sehr nahe bei null und sagt uns, dass die Prognosen auf den jüngsten und weniger jüngsten Beobachtungen beruhen (obwohl etwas mehr Gewicht auf die jüngsten Beobachtungen gelegt wird). Standardmäßig stellt HoltWinters () nur Prognosen für den gleichen Zeitraum dar, der von unseren ursprünglichen Zeitreihen abgedeckt ist. In diesem Fall war unsere ursprüngliche Zeitreihe Regenfälle für London von 1813-1912, also sind die Prognosen auch für 1813-1912. Im obigen Beispiel haben wir die Ausgabe der Funktion HoltWinters () in der Listenvariablen 8220rainseriesforecasts8221 gespeichert. Die Prognosen von HoltWinters () werden in einem benannten Element dieser Listenvariablen namens 8220fitted8221 gespeichert, so dass wir ihre Werte durch Eingabe erhalten können: Wir können die ursprüngliche Zeitreihe gegen die Prognosen zeichnen, indem wir folgendes eingeben: Das Diagramm zeigt die ursprüngliche Zeitreihe an Schwarz, und die Prognosen als rote Linie. Die Zeitreihe der Prognosen ist viel glatter als die Zeitreihen der Originaldaten hier. Als Maß für die Genauigkeit der Prognosen können wir die Summe der quadratischen Fehler für die Prognosefehler in der Stichprobe berechnen, dh die Prognosefehler für den Zeitraum, der von unseren ursprünglichen Zeitreihen abgedeckt ist. Die Summe von quadratischen Fehlern wird in einem benannten Element der Listenvariablen 8220rainseriesforecasts8221 mit dem Namen 8220SSE8221 gespeichert, so dass wir ihren Wert durch Eingabe erhalten können: Das ist hier die Summe von quadratischen Fehlern ist 1828.855. Es ist üblich, in einfacher exponentieller Glättung den ersten Wert in der Zeitreihe als Anfangswert für den Pegel zu verwenden. Zum Beispiel, in der Zeitreihe für Niederschläge in London, ist der erste Wert 23,56 (Zoll) für Niederschlag im Jahre 1813. Sie können den Anfangswert für den Level in der HoltWinters () - Funktion mit dem Parameter 8220l. start8221 angeben. Um beispielsweise Vorhersagen mit dem Anfangswert des auf 23.56 eingestellten Pegels zu setzen, geben wir Folgendes ein: Wie oben erläutert, stellt HoltWinters () standardmäßig Prognosen für den von den Originaldaten abgedeckten Zeitraum ein, der für den Niederschlag 1813-1912 beträgt Zeitfolgen. Wir können Prognosen für weitere Zeitpunkte erstellen, indem wir die Funktion 8220forecast. HoltWinters () 8221 im Paket R 8220forecast8221 verwenden. Um die Funktion forecast. HoltWinters () zu verwenden, müssen wir zuerst das Paket 8220forecast8221 R installieren (Anweisungen zur Installation eines R-Pakets finden Sie unter Installieren eines R-Pakets). Sobald Sie das Paket 8220forecast8221 R installiert haben, können Sie das Paket 8220forecast8221 R laden, indem Sie Folgendes eingeben: Wenn Sie die Funktion forecast. HoltWinters () als erstes Argument (Eingabe) verwenden, übergeben Sie das Vorhersagemodell, das Sie bereits mit dem HoltWinters () Funktion. Zum Beispiel haben wir im Fall der Regenzeit-Zeitreihen das Vorhersagemodell unter Verwendung von HoltWinters () in der Variablen 8220rainseriesforecasts8221 gespeichert. Sie geben an, wie viele weitere Zeitpunkte Sie Prognosen für die Verwendung des Parameters 8220h8221 in forecast. HoltWinters () vornehmen möchten. Zum Beispiel, um eine Prognose der Niederschläge für die Jahre 1814-1820 (8 weitere Jahre) mit Prognose. HoltWinters (), geben wir: Die Prognose. HoltWinters () - Funktion gibt Ihnen die Prognose für ein Jahr, ein 80 Vorhersage Intervall für Die Prognose und ein Vorhersageintervall von 95 für die Prognose. Zum Beispiel beträgt der prognostizierte Niederschlag für 1920 etwa 24,68 Zoll, mit einem 95 Vorhersageintervall von (16.24, 33.11). Um die Vorhersagen zu erstellen, die von prognose gemacht wurden. HoltWinters (), können wir die Funktion 8220plot. forecast () 8221 verwenden: Hier werden die Prognosen für 1913-1920 als eine blaue Linie, das 80-Vorhersageintervall als orangefarbener schattierter Bereich und die 95 Vorhersageintervall als gelber schattierter Bereich. Die gemessenen Fehler8217 werden als die beobachteten Werte minus vorhergesagten Werte für jeden Zeitpunkt berechnet. Wir können nur die Prognosefehler für den Zeitraum berechnen, der von unseren ursprünglichen Zeitreihen abgedeckt wird, was 1813-1912 für die Niederschlagsdaten ist. Wie oben erwähnt, ist ein Maß für die Genauigkeit des prädiktiven Modells die Summe von quadratischen Fehlern (SSE) für die in-Beispiel-Prognosefehler. Die Prognosefehler werden in dem benannten Element 8220residuals8221 der Listenvariable gespeichert, die von prognose. HoltWinters () zurückgegeben wird. If the predictive model cannot be improved upon, there should be no correlations between forecast errors for successive predictions. In other words, if there are correlations between forecast errors for successive predictions, it is likely that the simple exponential smoothing forecasts could be improved upon by another forecasting technique. To figure out whether this is the case, we can obtain a correlogram of the in-sample forecast errors for lags 1-20. We can calculate a correlogram of the forecast errors using the 8220acf()8221 function in R. To specify the maximum lag that we want to look at, we use the 8220lag. max8221 parameter in acf(). For example, to calculate a correlogram of the in-sample forecast errors for the London rainfall data for lags 1-20, we type: You can see from the sample correlogram that the autocorrelation at lag 3 is just touching the significance bounds. To test whether there is significant evidence for non-zero correlations at lags 1-20, we can carry out a Ljung-Box test. This can be done in R using the 8220Box. test()8221, function. The maximum lag that we want to look at is specified using the 8220lag8221 parameter in the Box. test() function. For example, to test whether there are non-zero autocorrelations at lags 1-20, for the in-sample forecast errors for London rainfall data, we type: Here the Ljung-Box test statistic is 17.4, and the p-value is 0.6, so there is little evidence of non-zero autocorrelations in the in-sample forecast errors at lags 1-20. To be sure that the predictive model cannot be improved upon, it is also a good idea to check whether the forecast errors are normally distributed with mean zero and constant variance. To check whether the forecast errors have constant variance, we can make a time plot of the in-sample forecast errors: The plot shows that the in-sample forecast errors seem to have roughly constant variance over time, although the size of the fluctuations in the start of the time series (1820-1830) may be slightly less than that at later dates (eg. 1840-1850). To check whether the forecast errors are normally distributed with mean zero, we can plot a histogram of the forecast errors, with an overlaid normal curve that has mean zero and the same standard deviation as the distribution of forecast errors. To do this, we can define an R function 8220plotForecastErrors()8221, below: You will have to copy the function above into R in order to use it. You can then use plotForecastErrors() to plot a histogram (with overlaid normal curve) of the forecast errors for the rainfall predictions: The plot shows that the distribution of forecast errors is roughly centred on zero, and is more or less normally distributed, although it seems to be slightly skewed to the right compared to a normal curve. However, the right skew is relatively small, and so it is plausible that the forecast errors are normally distributed with mean zero. The Ljung-Box test showed that there is little evidence of non-zero autocorrelations in the in-sample forecast errors, and the distribution of forecast errors seems to be normally distributed with mean zero. This suggests that the simple exponential smoothing method provides an adequate predictive model for London rainfall, which probably cannot be improved upon. Furthermore, the assumptions that the 80 and 95 predictions intervals were based upon (that there are no autocorrelations in the forecast errors, and the forecast errors are normally distributed with mean zero and constant variance) are probably valid. Holt8217s Exponential Smoothing If you have a time series that can be described using an additive model with increasing or decreasing trend and no seasonality, you can use Holt8217s exponential smoothing to make short-term forecasts. Holt8217s exponential smoothing estimates the level and slope at the current time point. Smoothing is controlled by two parameters, alpha, for the estimate of the level at the current time point, and beta for the estimate of the slope b of the trend component at the current time point. As with simple exponential smoothing, the paramters alpha and beta have values between 0 and 1, and values that are close to 0 mean that little weight is placed on the most recent observations when making forecasts of future values. An example of a time series that can probably be described using an additive model with a trend and no seasonality is the time series of the annual diameter of women8217s skirts at the hem, from 1866 to 1911. The data is available in the file robjhyndmantsdldatarobertsskirts. dat (original data from Hipel and McLeod, 1994). We can read in and plot the data in R by typing: We can see from the plot that there was an increase in hem diameter from about 600 in 1866 to about 1050 in 1880, and that afterwards the hem diameter decreased to about 520 in 1911. To make forecasts, we can fit a predictive model using the HoltWinters() function in R. To use HoltWinters() for Holt8217s exponential smoothing, we need to set the parameter gammaFALSE (the gamma parameter is used for Holt-Winters exponential smoothing, as described below). For example, to use Holt8217s exponential smoothing to fit a predictive model for skirt hem diameter, we type: The estimated value of alpha is 0.84, and of beta is 1.00. These are both high, telling us that both the estimate of the current value of the level, and of the slope b of the trend component, are based mostly upon very recent observations in the time series. This makes good intuitive sense, since the level and the slope of the time series both change quite a lot over time. The value of the sum-of-squared-errors for the in-sample forecast errors is 16954. We can plot the original time series as a black line, with the forecasted values as a red line on top of that, by typing: We can see from the picture that the in-sample forecasts agree pretty well with the observed values, although they tend to lag behind the observed values a little bit. If you wish, you can specify the initial values of the level and the slope b of the trend component by using the 8220l. start8221 and 8220b. start8221 arguments for the HoltWinters() function. It is common to set the initial value of the level to the first value in the time series (608 for the skirts data), and the initial value of the slope to the second value minus the first value (9 for the skirts data). For example, to fit a predictive model to the skirt hem data using Holt8217s exponential smoothing, with initial values of 608 for the level and 9 for the slope b of the trend component, we type: As for simple exponential smoothing, we can make forecasts for future times not covered by the original time series by using the forecast. HoltWinters() function in the 8220forecast8221 package. For example, our time series data for skirt hems was for 1866 to 1911, so we can make predictions for 1912 to 1930 (19 more data points), and plot them, by typing: The forecasts are shown as a blue line, with the 80 prediction intervals as an orange shaded area, and the 95 prediction intervals as a yellow shaded area. As for simple exponential smoothing, we can check whether the predictive model could be improved upon by checking whether the in-sample forecast errors show non-zero autocorrelations at lags 1-20. For example, for the skirt hem data, we can make a correlogram, and carry out the Ljung-Box test, by typing: Here the correlogram shows that the sample autocorrelation for the in-sample forecast errors at lag 5 exceeds the significance bounds. However, we would expect one in 20 of the autocorrelations for the first twenty lags to exceed the 95 significance bounds by chance alone. Indeed, when we carry out the Ljung-Box test, the p-value is 0.47, indicating that there is little evidence of non-zero autocorrelations in the in-sample forecast errors at lags 1-20. As for simple exponential smoothing, we should also check that the forecast errors have constant variance over time, and are normally distributed with mean zero. We can do this by making a time plot of forecast errors, and a histogram of the distribution of forecast errors with an overlaid normal curve: The time plot of forecast errors shows that the forecast errors have roughly constant variance over time. The histogram of forecast errors show that it is plausible that the forecast errors are normally distributed with mean zero and constant variance. Thus, the Ljung-Box test shows that there is little evidence of autocorrelations in the forecast errors, while the time plot and histogram of forecast errors show that it is plausible that the forecast errors are normally distributed with mean zero and constant variance. Therefore, we can conclude that Holt8217s exponential smoothing provides an adequate predictive model for skirt hem diameters, which probably cannot be improved upon. In addition, it means that the assumptions that the 80 and 95 predictions intervals were based upon are probably valid. Holt-Winters Exponential Smoothing If you have a time series that can be described using an additive model with increasing or decreasing trend and seasonality, you can use Holt-Winters exponential smoothing to make short-term forecasts. Holt-Winters exponential smoothing estimates the level, slope and seasonal component at the current time point. Smoothing is controlled by three parameters: alpha, beta, and gamma, for the estimates of the level, slope b of the trend component, and the seasonal component, respectively, at the current time point. The parameters alpha, beta and gamma all have values between 0 and 1, and values that are close to 0 mean that relatively little weight is placed on the most recent observations when making forecasts of future values. An example of a time series that can probably be described using an additive model with a trend and seasonality is the time series of the log of monthly sales for the souvenir shop at a beach resort town in Queensland, Australia (discussed above): To make forecasts, we can fit a predictive model using the HoltWinters() function. For example, to fit a predictive model for the log of the monthly sales in the souvenir shop, we type: The estimated values of alpha, beta and gamma are 0.41, 0.00, and 0.96, respectively. The value of alpha (0.41) is relatively low, indicating that the estimate of the level at the current time point is based upon both recent observations and some observations in the more distant past. The value of beta is 0.00, indicating that the estimate of the slope b of the trend component is not updated over the time series, and instead is set equal to its initial value. This makes good intuitive sense, as the level changes quite a bit over the time series, but the slope b of the trend component remains roughly the same. In contrast, the value of gamma (0.96) is high, indicating that the estimate of the seasonal component at the current time point is just based upon very recent observations. As for simple exponential smoothing and Holt8217s exponential smoothing, we can plot the original time series as a black line, with the forecasted values as a red line on top of that: We see from the plot that the Holt-Winters exponential method is very successful in predicting the seasonal peaks, which occur roughly in November every year. To make forecasts for future times not included in the original time series, we use the 8220forecast. HoltWinters()8221 function in the 8220forecast8221 package. For example, the original data for the souvenir sales is from January 1987 to December 1993. If we wanted to make forecasts for January 1994 to December 1998 (48 more months), and plot the forecasts, we would type: The forecasts are shown as a blue line, and the orange and yellow shaded areas show 80 and 95 prediction intervals, respectively. We can investigate whether the predictive model can be improved upon by checking whether the in-sample forecast errors show non-zero autocorrelations at lags 1-20, by making a correlogram and carrying out the Ljung-Box test: The correlogram shows that the autocorrelations for the in-sample forecast errors do not exceed the significance bounds for lags 1-20. Furthermore, the p-value for Ljung-Box test is 0.6, indicating that there is little evidence of non-zero autocorrelations at lags 1-20. We can check whether the forecast errors have constant variance over time, and are normally distributed with mean zero, by making a time plot of the forecast errors and a histogram (with overlaid normal curve): From the time plot, it appears plausible that the forecast errors have constant variance over time. From the histogram of forecast errors, it seems plausible that the forecast errors are normally distributed with mean zero. Thus, there is little evidence of autocorrelation at lags 1-20 for the forecast errors, and the forecast errors appear to be normally distributed with mean zero and constant variance over time. This suggests that Holt-Winters exponential smoothing provides an adequate predictive model of the log of sales at the souvenir shop, which probably cannot be improved upon. Furthermore, the assumptions upon which the prediction intervals were based are probably valid. ARIMA Models Exponential smoothing methods are useful for making forecasts, and make no assumptions about the correlations between successive values of the time series. However, if you want to make prediction intervals for forecasts made using exponential smoothing methods, the prediction intervals require that the forecast errors are uncorrelated and are normally distributed with mean zero and constant variance. While exponential smoothing methods do not make any assumptions about correlations between successive values of the time series, in some cases you can make a better predictive model by taking correlations in the data into account. Autoregressive Integrated Moving Average (ARIMA) models include an explicit statistical model for the irregular component of a time series, that allows for non-zero autocorrelations in the irregular component. Differencing a Time Series ARIMA models are defined for stationary time series. Therefore, if you start off with a non-stationary time series, you will first need to 8216difference8217 the time series until you obtain a stationary time series. If you have to difference the time series d times to obtain a stationary series, then you have an ARIMA(p, d,q) model, where d is the order of differencing used. You can difference a time series using the 8220diff()8221 function in R. For example, the time series of the annual diameter of women8217s skirts at the hem, from 1866 to 1911 is not stationary in mean, as the level changes a lot over time: We can difference the time series (which we stored in 8220skirtsseries8221, see above) once, and plot the differenced series, by typing: The resulting time series of first differences (above) does not appear to be stationary in mean. Therefore, we can difference the time series twice, to see if that gives us a stationary time series: Formal tests for stationarity Formal tests for stationarity called 8220unit root tests8221 are available in the fUnitRoots package, available on CRAN, but will not be discussed here. The time series of second differences (above) does appear to be stationary in mean and variance, as the level of the series stays roughly constant over time, and the variance of the series appears roughly constant over time. Thus, it appears that we need to difference the time series of the diameter of skirts twice in order to achieve a stationary series. If you need to difference your original time series data d times in order to obtain a stationary time series, this means that you can use an ARIMA(p, d,q) model for your time series, where d is the order of differencing used. For example, for the time series of the diameter of women8217s skirts, we had to difference the time series twice, and so the order of differencing (d) is 2. This means that you can use an ARIMA(p,2,q) model for your time series. The next step is to figure out the values of p and q for the ARIMA model. Another example is the time series of the age of death of the successive kings of England (see above): From the time plot (above), we can see that the time series is not stationary in mean. To calculate the time series of first differences, and plot it, we type: The time series of first differences appears to be stationary in mean and variance, and so an ARIMA(p,1,q) model is probably appropriate for the time series of the age of death of the kings of England. By taking the time series of first differences, we have removed the trend component of the time series of the ages at death of the kings, and are left with an irregular component. We can now examine whether there are correlations between successive terms of this irregular component if so, this could help us to make a predictive model for the ages at death of the kings. Selecting a Candidate ARIMA Model If your time series is stationary, or if you have transformed it to a stationary time series by differencing d times, the next step is to select the appropriate ARIMA model, which means finding the values of most appropriate values of p and q for an ARIMA(p, d,q) model. To do this, you usually need to examine the correlogram and partial correlogram of the stationary time series. To plot a correlogram and partial correlogram, we can use the 8220acf()8221 and 8220pacf()8221 functions in R, respectively. To get the actual values of the autocorrelations and partial autocorrelations, we set 8220plotFALSE8221 in the 8220acf()8221 and 8220pacf()8221 functions. Example of the Ages at Death of the Kings of England For example, to plot the correlogram for lags 1-20 of the once differenced time series of the ages at death of the kings of England, and to get the values of the autocorrelations, we type: We see from the correlogram that the autocorrelation at lag 1 (-0.360) exceeds the significance bounds, but all other autocorrelations between lags 1-20 do not exceed the significance bounds. To plot the partial correlogram for lags 1-20 for the once differenced time series of the ages at death of the English kings, and get the values of the partial autocorrelations, we use the 8220pacf()8221 function, by typing: The partial correlogram shows that the partial autocorrelations at lags 1, 2 and 3 exceed the significance bounds, are negative, and are slowly decreasing in magnitude with increasing lag (lag 1: -0.360, lag 2: -0.335, lag 3:-0.321). The partial autocorrelations tail off to zero after lag 3. Since the correlogram is zero after lag 1, and the partial correlogram tails off to zero after lag 3, this means that the following ARMA (autoregressive moving average) models are possible for the time series of first differences: an ARMA(3,0) model, that is, an autoregressive model of order p3, since the partial autocorrelogram is zero after lag 3, and the autocorrelogram tails off to zero (although perhaps too abruptly for this model to be appropriate) an ARMA(0,1) model, that is, a moving average model of order q1, since the autocorrelogram is zero after lag 1 and the partial autocorrelogram tails off to zero an ARMA(p, q) model, that is, a mixed model with p and q greater than 0, since the autocorrelogram and partial correlogram tail off to zero (although the correlogram probably tails off to zero too abruptly for this model to be appropriate) We use the principle of parsimony to decide which model is best: that is, we assume that the model with the fewest parameters is best. The ARMA(3,0) model has 3 parameters, the ARMA(0,1) model has 1 parameter, and the ARMA(p, q) model has at least 2 parameters. Therefore, the ARMA(0,1) model is taken as the best model. An ARMA(0,1) model is a moving average model of order 1, or MA(1) model. This model can be written as: Xt - mu Zt - (theta Zt-1), where Xt is the stationary time series we are studying (the first differenced series of ages at death of English kings), mu is the mean of time series Xt, Zt is white noise with mean zero and constant variance, and theta is a parameter that can be estimated. A MA (moving average) model is usually used to model a time series that shows short-term dependencies between successive observations. Intuitively, it makes good sense that a MA model can be used to describe the irregular component in the time series of ages at death of English kings, as we might expect the age at death of a particular English king to have some effect on the ages at death of the next king or two, but not much effect on the ages at death of kings that reign much longer after that. Shortcut: the auto. arima() function The auto. arima() function can be used to find the appropriate ARIMA model, eg. type 8220library(forecast)8221, then 8220auto. arima(kings)8221. The output says an appropriate model is ARIMA(0,1,1). Since an ARMA(0,1) model (with p0, q1) is taken to be the best candidate model for the time series of first differences of the ages at death of English kings, then the original time series of the ages of death can be modelled using an ARIMA(0,1,1) model (with p0, d1, q1, where d is the order of differencing required). Example of the Volcanic Dust Veil in the Northern Hemisphere Let8217s take another example of selecting an appropriate ARIMA model. The file file robjhyndmantsdldataannualdvi. dat contains data on the volcanic dust veil index in the northern hemisphere, from 1500-1969 (original data from Hipel and Mcleod, 1994). This is a measure of the impact of volcanic eruptions8217 release of dust and aerosols into the environment. We can read it into R and make a time plot by typing: From the time plot, it appears that the random fluctuations in the time series are roughly constant in size over time, so an additive model is probably appropriate for describing this time series. Furthermore, the time series appears to be stationary in mean and variance, as its level and variance appear to be roughly constant over time. Therefore, we do not need to difference this series in order to fit an ARIMA model, but can fit an ARIMA model to the original series (the order of differencing required, d, is zero here). We can now plot a correlogram and partial correlogram for lags 1-20 to investigate what ARIMA model to use: We see from the correlogram that the autocorrelations for lags 1, 2 and 3 exceed the significance bounds, and that the autocorrelations tail off to zero after lag 3. The autocorrelations for lags 1, 2, 3 are positive, and decrease in magnitude with increasing lag (lag 1: 0.666, lag 2: 0.374, lag 3: 0.162). The autocorrelation for lags 19 and 20 exceed the significance bounds too, but it is likely that this is due to chance, since they just exceed the significance bounds (especially for lag 19), the autocorrelations for lags 4-18 do not exceed the signifiance bounds, and we would expect 1 in 20 lags to exceed the 95 significance bounds by chance alone. From the partial autocorrelogram, we see that the partial autocorrelation at lag 1 is positive and exceeds the significance bounds (0.666), while the partial autocorrelation at lag 2 is negative and also exceeds the significance bounds (-0.126). The partial autocorrelations tail off to zero after lag 2. Since the correlogram tails off to zero after lag 3, and the partial correlogram is zero after lag 2, the following ARMA models are possible for the time series: an ARMA(2,0) model, since the partial autocorrelogram is zero after lag 2, and the correlogram tails off to zero after lag 3, and the partial correlogram is zero after lag 2 an ARMA(0,3) model, since the autocorrelogram is zero after lag 3, and the partial correlogram tails off to zero (although perhaps too abruptly for this model to be appropriate) an ARMA(p, q) mixed model, since the correlogram and partial correlogram tail off to zero (although the partial correlogram perhaps tails off too abruptly for this model to be appropriate) Shortcut: the auto. arima() function Again, we can use auto. arima() to find an appropriate model, by typing 8220auto. arima(volcanodust)8221, which gives us ARIMA(1,0,2), which has 3 parameters. However, different criteria can be used to select a model (see auto. arima() help page). If we use the 8220bic8221 criterion, which penalises the number of parameters, we get ARIMA(2,0,0), which is ARMA(2,0): 8220auto. arima(volcanodust, ic8221bic8221)8221. The ARMA(2,0) model has 2 parameters, the ARMA(0,3) model has 3 parameters, and the ARMA(p, q) model has at least 2 parameters. Therefore, using the principle of parsimony, the ARMA(2,0) model and ARMA(p, q) model are equally good candidate models. An ARMA(2,0) model is an autoregressive model of order 2, or AR(2) model. This model can be written as: Xt - mu (Beta1 (Xt-1 - mu)) (Beta2 (Xt-2 - mu)) Zt, where Xt is the stationary time series we are studying (the time series of volcanic dust veil index), mu is the mean of time series Xt, Beta1 and Beta2 are parameters to be estimated, and Zt is white noise with mean zero and constant variance. An AR (autoregressive) model is usually used to model a time series which shows longer term dependencies between successive observations. Intuitively, it makes sense that an AR model could be used to describe the time series of volcanic dust veil index, as we would expect volcanic dust and aerosol levels in one year to affect those in much later years, since the dust and aerosols are unlikely to disappear quickly. If an ARMA(2,0) model (with p2, q0) is used to model the time series of volcanic dust veil index, it would mean that an ARIMA(2,0,0) model can be used (with p2, d0, q0, where d is the order of differencing required). Similarly, if an ARMA(p, q) mixed model is used, where p and q are both greater than zero, than an ARIMA(p,0,q) model can be used. Forecasting Using an ARIMA Model Once you have selected the best candidate ARIMA(p, d,q) model for your time series data, you can estimate the parameters of that ARIMA model, and use that as a predictive model for making forecasts for future values of your time series. You can estimate the parameters of an ARIMA(p, d,q) model using the 8220arima()8221 function in R. Example of the Ages at Death of the Kings of England For example, we discussed above that an ARIMA(0,1,1) model seems a plausible model for the ages at deaths of the kings of England. You can specify the values of p, d and q in the ARIMA model by using the 8220order8221 argument of the 8220arima()8221 function in R. To fit an ARIMA(p, d,q) model to this time series (which we stored in the variable 8220kingstimeseries8221, see above), we type: As mentioned above, if we are fitting an ARIMA(0,1,1) model to our time series, it means we are fitting an an ARMA(0,1) model to the time series of first differences. An ARMA(0,1) model can be written Xt - mu Zt - (theta Zt-1), where theta is a parameter to be estimated. From the output of the 8220arima()8221 R function (above), the estimated value of theta (given as 8216ma18217 in the R output) is -0.7218 in the case of the ARIMA(0,1,1) model fitted to the time series of ages at death of kings. Specifying the confidence level for prediction intervals You can specify the confidence level for prediction intervals in forecast. Arima() by using the 8220level8221 argument. For example, to get a 99.5 prediction interval, we would type 8220forecast. Arima(kingstimeseriesarima, h5, levelc(99.5))8221. We can then use the ARIMA model to make forecasts for future values of the time series, using the 8220forecast. Arima()8221 function in the 8220forecast8221 R package. For example, to forecast the ages at death of the next five English kings, we type: The original time series for the English kings includes the ages at death of 42 English kings. The forecast. Arima() function gives us a forecast of the age of death of the next five English kings (kings 43-47), as well as 80 and 95 prediction intervals for those predictions. The age of death of the 42nd English king was 56 years (the last observed value in our time series), and the ARIMA model gives the forecasted age at death of the next five kings as 67.8 years. We can plot the observed ages of death for the first 42 kings, as well as the ages that would be predicted for these 42 kings and for the next 5 kings using our ARIMA(0,1,1) model, by typing: As in the case of exponential smoothing models, it is a good idea to investigate whether the forecast errors of an ARIMA model are normally distributed with mean zero and constant variance, and whether the are correlations between successive forecast errors. For example, we can make a correlogram of the forecast errors for our ARIMA(0,1,1) model for the ages at death of kings, and perform the Ljung-Box test for lags 1-20, by typing: Since the correlogram shows that none of the sample autocorrelations for lags 1-20 exceed the significance bounds, and the p-value for the Ljung-Box test is 0.9, we can conclude that there is very little evidence for non-zero autocorrelations in the forecast errors at lags 1-20. To investigate whether the forecast errors are normally distributed with mean zero and constant variance, we can make a time plot and histogram (with overlaid normal curve) of the forecast errors: The time plot of the in-sample forecast errors shows that the variance of the forecast errors seems to be roughly constant over time (though perhaps there is slightly higher variance for the second half of the time series). The histogram of the time series shows that the forecast errors are roughly normally distributed and the mean seems to be close to zero. Therefore, it is plausible that the forecast errors are normally distributed with mean zero and constant variance. Since successive forecast errors do not seem to be correlated, and the forecast errors seem to be normally distributed with mean zero and constant variance, the ARIMA(0,1,1) does seem to provide an adequate predictive model for the ages at death of English kings. Example of the Volcanic Dust Veil in the Northern Hemisphere We discussed above that an appropriate ARIMA model for the time series of volcanic dust veil index may be an ARIMA(2,0,0) model. To fit an ARIMA(2,0,0) model to this time series, we can type: As mentioned above, an ARIMA(2,0,0) model can be written as: written as: Xt - mu (Beta1 (Xt-1 - mu)) (Beta2 (Xt-2 - mu)) Zt, where Beta1 and Beta2 are parameters to be estimated. The output of the arima() function tells us that Beta1 and Beta2 are estimated as 0.7533 and -0.1268 here (given as ar1 and ar2 in the output of arima()). Now we have fitted the ARIMA(2,0,0) model, we can use the 8220forecast. ARIMA()8221 model to predict future values of the volcanic dust veil index. The original data includes the years 1500-1969. To make predictions for the years 1970-2000 (31 more years), we type: We can plot the original time series, and the forecasted values, by typing: One worrying thing is that the model has predicted negative values for the volcanic dust veil index, but this variable can only have positive values The reason is that the arima() and forecast. Arima() functions don8217t know that the variable can only take positive values. Clearly, this is not a very desirable feature of our current predictive model. Again, we should investigate whether the forecast errors seem to be correlated, and whether they are normally distributed with mean zero and constant variance. To check for correlations between successive forecast errors, we can make a correlogram and use the Ljung-Box test: The correlogram shows that the sample autocorrelation at lag 20 exceeds the significance bounds. However, this is probably due to chance, since we would expect one out of 20 sample autocorrelations to exceed the 95 significance bounds. Furthermore, the p-value for the Ljung-Box test is 0.2, indicating that there is little evidence for non-zero autocorrelations in the forecast errors for lags 1-20. To check whether the forecast errors are normally distributed with mean zero and constant variance, we make a time plot of the forecast errors, and a histogram: The time plot of forecast errors shows that the forecast errors seem to have roughly constant variance over time. However, the time series of forecast errors seems to have a negative mean, rather than a zero mean. We can confirm this by calculating the mean forecast error, which turns out to be about -0.22: The histogram of forecast errors (above) shows that although the mean value of the forecast errors is negative, the distribution of forecast errors is skewed to the right compared to a normal curve. Therefore, it seems that we cannot comfortably conclude that the forecast errors are normally distributed with mean zero and constant variance Thus, it is likely that our ARIMA(2,0,0) model for the time series of volcanic dust veil index is not the best model that we could make, and could almost definitely be improved upon Links and Further Reading Here are some links for further reading. For a more in-depth introduction to R, a good online tutorial is available on the 8220Kickstarting R8221 website, cran. r-project. orgdoccontribLemon-kickstart . There is another nice (slightly more in-depth) tutorial to R available on the 8220Introduction to R8221 website, cran. r-project. orgdocmanualsR-intro. html . You can find a list of R packages for analysing time series data on the CRAN Time Series Task View webpage . To learn about time series analysis, I would highly recommend the book 8220Time series8221 (product code M24902) by the Open University, available from the Open University Shop . There are two books available in the 8220Use R8221 series on using R for time series analyses, the first is Introductory Time Series with R by Cowpertwait and Metcalfe, and the second is Analysis of Integrated and Cointegrated Time Series with R by Pfaff. Acknowledgements I am grateful to Professor Rob Hyndman. for kindly allowing me to use the time series data sets from his Time Series Data Library (TSDL) in the examples in this booklet. Many of the examples in this booklet are inspired by examples in the excellent Open University book, 8220Time series8221 (product code M24902), available from the Open University Shop . Thank you to Ravi Aranke for bringing auto. arima() to my attention, and Maurice Omane-Adjepong for bringing unit root tests to my attention, and Christian Seubert for noticing a small bug in plotForecastErrors(). Thank you for other comments to Antoine Binard and Bill Johnston. I will be grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to my email address alc 64 sanger 46 ac 46 uk
No comments:
Post a Comment